skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kook, Myungho"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding light propagation and attenuation in cavities is limited by lack of applicable light sensing technologies. Here we demonstrate the use of light-sensitive metastable states in wide bandgap aluminosilicates (feldspar) as passive optical sensors for high-resolution mapping of light flux. We develop non-destructive, infrared photoluminescence (IRPL) imaging of trapped electrons in cracks as thin as 50 µm width to determine the spatio-temporal evolution of light sensitive metastable states in response to light exposure. Modelling of these data yields estimates of relative light flux at different depths along the crack surfaces. Contrary to expectation, the measured light flux does not scale with the crack width, and it is independent of crack orientation suggesting the dominance of diffused light propagation within the cracks. This work paves way for understanding of how light attenuates in the minutest of cavities for applications in areas as diverse as geomorphology, biology/ecology and civil engineering. 
    more » « less